
www.manaraa.com

IEEE INFOCOM 2002 1

Clock Synchronization Algorithms for Network
Measurements

Li Zhang, Zhen Liu and Cathy Honghui Xia

Abstract—Packet delay traces are important measurements for analyz-
ing end-to-end performance and for designing traffic control algorithms in
computer networks. Due to the fact that the clocks at end systems are usu-
ally not synchronized and running at different speeds, these measurements
can be quite inaccurate. We propose several algorithms to estimate and
remove the relative clock skews from delay measurements based on the
computation of convex hulls. Compared with existing techniques such as
linear regression and linear programming, the convex-hull approach pro-
vides better insight and allows us to handle more error metrics. We obtain
algorithms which are linear in the number of measurement points for the
case with no clock resets. For the more challenging case with clock resets,
i.e., the clocks are reset to some reference times during the measurement
period, we develop linear algorithms to identify the clock resets, and derive
the best clock skew lines. We extend this analysis to environments in which
at least one of the clocks is controlled by NTP. These algorithms can greatly
improve the accuracy of the measurements, and can be used both online
and offline. They can also be extended for active clock synchronization, to
replace or further improve NTP. Numerical experiments are presented to
demonstrate the robustness of the algorithms.

I. INTRODUCTION

Packet delay traces are important measurements for analyzing
end-to-end performance and for designing traffic control algo-
rithms in computer networks. These measurement data can help
in decision making in traffic routing, capacity planning, appli-
cation tuning, alarm detection and network fault detection, etc.
These delay traces can be obtained either by monitoring tools or
by active probing. In either case, time stamps of packets are col-
lected at the source and the destination. The difference between
the two timestamps of the same packet is the measured delay for
the end-to-end network delay experienced by that packet. If the
two host clocks are perfectly synchronized, then the measured
delay is the true delay. However, in real measurements, the two
host clocks are usually not synchronized. In particular, the two
clocks may run at different speeds. This difference in speed is
called the clock skew. It is therefore possible for the receiver to
receive a packet from the “future”, resulting in a negative delay
according to the measurement. The measured delay in this case
can be very different from the true delay.

In this paper, we address the problem of estimating and
removing the relative clock skews from delay measurements.
The problem becomes more challenging and complicated in the
case that the clocks may be reset through system calls such as
rdate. Such resets are typically performed at a very coarse
level through the cron daemon, e.g. a couple of times a day.
Without prior knowledge of the reset times, we need to “detect”
them from the data, and obtain the “correct” delay measure-
ments. Another type of resets is velocity adjustments through
the use of Network Time Protocol (NTP) [3]. Such velocity ad-
justments are usually performed at a finer time granularity.

Although we have no prior knowledge about the offset, about

IBM T.J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY
10598; fzhangli,zhenl,cathyxg@us.ibm.com

skew between the two clocks, and about the reset times of ei-
ther clock, there is still a lot of information contained in the
data that allows us to make reasonable estimates of the clock
skew. Assume we have a collection of measurement data,

 := fvi = (ti; di) : i = 1; : : : ; Ng, where ti is the time
the packet was sent according to sender’s clock, and di is the
measured delay. We plot these data in the 2-D plane using ti as
the x coordinate and di as the y coordinate. From the plot we
observe that all the points are supported by a straight line and
that this straight line has a non-zero slope (Figure 1). The in-
terpretation of this phenomenon, if the two clocks are perfectly
synchronized, would be that there is a steady trend for the de-
lay to grow (or decay) as time progresses. This is very unlikely
to happen. It is therefore reasonable to attribute such a trend
to clock skew. After removing such clock skew, the resulting
delay can then be used as a true measurement of the network
condition. It is also possible for temporary internet congestion
to cause the delay measurements to increase for a period of time.
This is illustrated by the lower plot in Figure 1 with simulated
data.

0
100
200
300
400
500
600
700
800

0 5000 10000 15000 20000 25000 30000 35000

Ge
ne

ra
ted

 D
ela

y (
m

s)

Time (s)

skew = 0.005

0

100

200

300

400

500

600

700

0 5000 10000 15000 20000 25000 30000 35000

Ge
ne

ra
ted

 D
ela

y (
m

s)

Time (s)

skew = 0.005

Fig. 1. Delay Measurements (generated)

In the literature, several solutions have been proposed to ad-
dress this problem of clock skew correction. In [5], Paxson pro-
vides an algorithm using the median line fitting technique. This
algorithm, however, provides a poor estimate of the slope of the
trend when the data is highly variable. The linear regression
algorithm is discussed in both [4] and [5]. It does not work
well due to the nature of the delay measurements. Specifically,
the linear regression algorithm works well when the distribu-
tions of the data are normal. The network delay measurements,
however, rarely satisfy this condition. Furthermore, temporary
network congestion would cause significant amount of devia-
tion for the skew slope estimations. The piecewise minimum is
discussed in [4]. It provides a series of skew segments. These

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

www.manaraa.com

IEEE INFOCOM 2002 2

segments are very unlikely to be a straight line, or to have the
same slope. It therefore does not provide the correct skew esti-
mate. In cite[moon], Moon, Skelly and Towsley formulate the
problem as a linear program and solve it using standard algo-
rithms in [1]. This approach is closest to our current solution.

These algorithms, however, do not apply to the cases with
clock resets or velocity adjustments. Our approach is based
on the computation of convex hulls. Compared with existing
techniques such as linear regression and linear programming,
the convex-hull approach provides better insight and allows us
to handle more error metrics. We obtain algorithms which are
linear in the number of measurement points when there are no
clock resets. For the more challenging cases with clock resets,
i.e., the cases where the clocks are reset to some reference times
when the delays traces are recorded, we develop linear algo-
rithms to identify the clock resets, and then derive the best clock
skew lines. We extend this analysis to environments in which at
least one of the clocks is controlled by NTP. These algorithms
can greatly improve the accuracy of the measurements, and they
can be used both online and offline. The online feature of our
approach allows us to use the algorithms for online clock syn-
chronization. Furthermore, our approach has the advantage that
it provides analytical solutions for different objective functions.
Numerical experiments are also presented to demonstrate the ro-
bustness of the algorithms.

The presentation of the paper is organized as follows. We
first define the notation and the problem under consideration.
We then describe in Section III our convex-hull approach for the
case without clock resets. In Section IV, we extend the tech-
nique and propose an algorithm for the case with clock resets.
In Section V, we describe an algorithm for the case of NTP.
The issue of online use of the convex-hull approach is discussed
in Section VI. In Section VII, we present experimental results
obtained under various configurations. Finally, concluding re-
marks are provided in Section VIII.

II. GENERAL PROBLEM FORMULATION

Based on the observations made in the last section, namely,
the supporting straight line for clock skew and the abrupt shift
of the delay level for clock reset, we can obtain a mathematical
formulation for the clock skew problem.

Assume we have the collection of measurements,
 = fvi =
(ti; di) : i = 1; : : : ; Ng. If we do not consider clock resets, the
problem is to find a linear function which is below all the points
in
, and is closest to
 in some sense. There are many possible
metrics for determining how close a line is to a set of points. We
will discuss three metrics that mimic our observation in the last
section, will illustrate their different properties and show how to
solve the problem for these metrics.

With clock resets, the problem is then to find a piecewise lin-
ear function, with each piece having the same slope, such that
all the points in
 are above the function, and such that this
piecewise linear function is closest to
 under some objective
function. Note that each piece should have the same slope since
the difference in speed (or the rate of the skewness) of two given
clocks is fixed. In real systems, one would not expect frequent
clock resets.

We assume that all the ti’s are initially sorted in increasing

order, which will usually be the case. This assumption allows us
to develop linear time algorithms to solve the problem.

III. CONVEX HULL APPROACH FOR CLOCK SKEW

ESTIMATION

We first focus on the simpler case with no clock reset. Sup-
pose the line for clock skew is L := f(x; y)jy = �x + �g. The
restriction for all the points in
 to be above this line can be
expressed as

�ti + � � di: (1)

Among all lines that satisfy this condition we would like to
choose the one that is the closest to
.

A. Objective Functions

We consider three metrics that can be used as the objective
function for the optimization problem described above. These
three examples are simple enough, yet capture the key ideas be-
hind our intuition. We use them as example metrics to illustrate
how our approach works. There are certainly other objective
functions that one could use to solve the problem.

(1) Minimize the sum of the vertical distances between the
points and the line.

The objective function is then

obj1 :=

NX

i=1

(di � �ti � �) =

NX

i=1

di �

NX

i=1

ti ��N� (2)

This is the the objective function used by Moon, Skelly and
Towsley [4] in their linear programming formulation. They im-
plemented an O(N) algorithm from [1], [2] that takes advantage
of the fact that all the ti’s in
 are already sorted.

(2) Minimize the area between the curve and the line.
To obtain this objective function we can sum over the area

between the line y = �x + � and the line segment between
every two consecutive points in
. This gives

obj2 :=

N�1X

i=1

(di � �ti � � + di+1 � �ti+1 � �)
(ti+1 � ti)

2

=

N�1X

i=1

(di + di+1)(ti+1 � ti)

2
�

t2N � t21
2

�� (tN � t1)� (3)

This is the objective function that we are going to focus on. In
the special case that the sender is sending out the packet regu-
larly, i.e., ti+1 � ti = c, we have

N � 1

N
obj1 �

1

c
obj2 =

d1 + dN
2

�
d1 + � � �+ dN

N
:

Since N; d1; : : : ; dN , and c are fixed constants with given data,
the two objective functions obj1 and obj2 are equivalent.

(3) Maximize the number of points on the line.
This objective function is different from the previous two in

the sense that it is not linear in the variables � and �. We can
write it using the indicator function

obj3 :=
NX

i=1

1fdi=�ti+�g: (4)

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

www.manaraa.com

IEEE INFOCOM 2002 3

In spite of being nonlinear, we can still solve the optimization
problem of maximizing this objective function in time O(N) by
using our approach in the next section.

These three objective functions characterize different aspects
of our observation of making the skew line as close to the points
as possible. Each of them works well under certain circum-
stances, and performs poorly for some other cases. Intuitively,
they give different weights for individual points in evaluating
the distance between a set of points and a line. We will develop
linear time algorithms for these three objective functions in the
next section by computing the convex hull of
.

B. Convex Hull Approach

To solve the optimization problems we first take a closer look
at the constraints in (1), which says that all the points in
 are
above the straight line L = f(x; y)jy = �x + �g. From the
theory of convex polytopes [6] we know that this is equivalent
to saying the convex hull of
,

co (
) := f x j x =
X

i

�ivi; �i � 0;
X

i

�i = 1; vi 2
 g;

is above L. The convex hull of N points is a polytope enclosed
by piecewise linear functions. In this case, it is enough to make
sure the lower boundary of co (
) is above L. Taking advan-
tage of the fact that the ti’s of all the points in
 are sorted in
increasing order we can find an algorithm that needs at most 2N
operations to find the lower boundary of co (
).

The significance of the convex hull is that the “closest” line
L to
 will touch
 at some point. If L does not touch
, we
can always shift it up so that it is “closer” to
. Therefore,
no matter what objective function one uses, the optimal straight
line L will be below the convex hull co (
) and touch it at some
point. Furthermore, it is easy to show that at least one of the
touching points is in
. This is because all the vertices of co (
)
are points in
, and the “closest” line to
 touches co (
) at one
or more of its vertices.

This special property of the convex hull is the key to the al-
gorithms that we develop in the next section. And it plays a
vital role in developing algorithms for other possible objective
functions as well.

C. Algorithms

We will first present the key algorithm for finding co (
), and
then show how to make use of this algorithm to find the optimal
straight line with respect to the three objective functions.

C.1 Convex Hull

Given
 = fvi = (ti; di) : i = 1; : : : ; Ng, with t1 � t2 �
: : : � tN . We first find the lower boundary of co (
). It is well
known that this lower boundary is composed of line segments
whose end points are in
. We use a stack to keep track of these
points.

The algorithm examines the points in
 from left to right. For
each point, it determines whether to push it into the stack right
away or to pop some points out of the stack and push this point
in. At the end of the algorithm, all the points in the stack are the
vertices of the lower boundary of co (
). For our convenience,

we will use line(v; w) to denote the straight line connecting the
two points v and w.

Algorithm Convex Hull L:

(1) Initialize: push v1; push v2;
(2) For i = 3 to N

If (vi above line(top; next to top)) push vi;
Else

While (vi below line(top; next to top)
and stack size > 1)

pop;
push vi;

(3) End

It is easy to see that when the algorithm stops, all the points in
stack are in
 and the line segments of the consecutive points in
stack are in co (
). Furthermore, all the points in
 are above
these line segments. This is because each point vi is pushed into
the stack when it is first seen. It is popped out of the stack only
when it is above the line segment between two other points in

. Therefore, the line segment of all the consecutive points in
the stack is the lower boundary of co (
).

In the algorithm, for every comparison either a new point
gets pushed into the stack, or a point in the stack gets popped
out. Each point in
 is pushed into the stack exactly once, and
popped out at most once. Therefore, there are at most 2N push
and pop operations before the algorithm stops.

We further remark that straightforward modification of algo-
rithm Convex Hull L by reversing the role of above and below
provides an algorithm named Convex Hull U, which gives the
upper boundary of the convex hull. Combining algorithms Con-
vex Hull L and Convex Hull U we can find the convex hull of

 in linear time. We only need algorithm Convex Hull L in this
paper.

C.2 obj1 and obj2

We first obtain the lower boundary of co (
) using algorithm
Convex Hull L. We show next that the section of the lower
boundary that covers the point

P
i ti=N provides the optimal

solution to obj1, and that the section of the lower boundary that
covers the middle point, (t1 + tN)=2 provides the optimal solu-
tion to obj2. To establish these results, let us first present some
structural properties of the problem.

For any fixed �, and given c1; c2; c3, we define

f(�) = min
�

c1 � c2�� c3�

s.t. ti�+ � � di; i = 1; : : : ; N:

We can then take the minimum over � and obtain:
Proposition 1: The minimization over �; � can be sequen-

tialized, i.e.,

min
�

f(�) = min
�;�

c1 � c2�� c3�

s.t. ti�+ � � di; i = 1; : : : ; N:
We now assume c3 > 0. It is easy to check that obj1 and obj2

both satisfy this condition. By taking a closer look at the func-
tion f(�), we can prove the following key structural property.

Theorem 2: f(�) is convex in �.

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

www.manaraa.com

IEEE INFOCOM 2002 4

Proof: From the constraints, we have � � di � ti�; i =
1; : : : ; N: Since c3 > 0,

f(�) = c1 � c2�� c3min
i
fdi � ti�g

= c1 � c2�+ c3max
i
fti�� dig (5)

The result follows since max() is a convex function. 2

Geometrically, for fixed �, we are simply shifting the line
with slope � to touch the lower boundary of co (
) at an extreme
point. The value of the objective function with respect to this
line gives f(�).

Since f(�) is convex, a local minimal solution must be glob-
ally minimal. It suffices to find a local minimum of f(�). For
�1 < �2, suppose f(�1) and f(�2) achieve the maximum in
(5) at the same point, say (ti0 ; di0). Note that this point must be
an extreme point of co (
), as illustrated in Figure 2.

α1

α2 i 0 i 0

co ()Ω

(t , d)

t

d

Fig. 2. Finding the vertex for the optimal skew line

We then have
f(�k) = c1 � c2�k + c3(ti0�k � di0); k = 1; 2:

It follows that f(�1)� f(�2) = (c3ti0 � c2)(�1 � �2):
Therefore,

f(�1) < f(�2) () ti0 > c2=c3:

This shows that f(�) is decreasing when ti0 is smaller than
c2=c3, and increasing when ti0 is larger than c2=c3. Hence the
optimal solution is achieved by the lower boundary of co (
)
that covers the point c2=c3. For obj1, from (2), c2=c3 =P

i ti=N . For obj2, from (3), c2=c3 = (t1 + tN)=2. We can
therefore conclude:

Theorem 3: The optimal solution for the distance objective
obj1 is the section of the lower boundary of co (
) that covers
the point

P
i ti=N . The optimal solution for the area objective

obj2 is the section of the lower boundary of co (
) that covers
the point (t1 + tN)=2. The overall time for finding the optimal
solution for both obj1 and obj2 are of order O(N).

C.3 obj3

After obtaining the lower boundary of co (
), we can walk
through all the points and count how many points in
 are on
each section of the boundary. Notice that this counting proce-
dure can be combined with algorithm Convex Hull L so that we
can count the numbers on the fly. Either way, the complexity is
O(N).

Theorem 4: The section in the lower boundary with the most
points in
 is the optimal solution under obj3, and it can be
obtained in time O(N).

IV. CLOCK SKEW CORRECTIONS WITH CLOCK RESETS

We now consider the general problem with clock resets. In
this section, we focus only on those clock resets that perform

instantaneous time adjustments. The type of smooth velocity
adjustments used in NTP will be discussed in the next section.

As mentioned in the previous section, in real measurements
we do not expect to have many such instantaneous clock resets.
We focus on the problem with a fixed number of resets. We as-
sume that there is no change in clock speeds before and after
clock resets. Therefore, the skew lines before and after clock
resets should have the same slope. We can use the three objec-
tive functions described in the previous section to measure the
goodness of a skew slope.

In the event of clock resets, we would observe a supporting
straight line for a duration of time and then an abrupt shift of the
delay level followed by another supporting straight line of the
same slope. This abrupt shift of the delay level is likely due to
the clock reset, though it could be for other reasons, such as the
failure of a router, resulting in different routing of the packets.

We can therefore base our analysis on these characteristics
of the data to determine the clock skew and obtain the correct
measurement of the end-to-end delay between the two hosts.

We start by considering the case with one clock reset dur-
ing the entire measurement, and then extend the approach to the
general case with a bounded number of clock resets.

A. One Clock Reset

Suppose there is only one clock reset during the entire trace.
Suppose the clock reset time is time tk+1. We will then vary k
to obtain the best tk+1 as the final solution for the clock reset
time.

Suppose the supporting clock skew lines in the two sec-
tions (i.e., the sections before and after time tk+1) are L1 :=
f(x; y)jy = �x + �1; x � tkg, and L2 := f(x; y)jy =
�x + �2; x � tk+1g. Let
1 := fvi = (ti; di) : i =
1; : : : ; k1g;
2 := fvi = (ti; di) : i = k1 + 1; : : : ; Ng: We
require all the points in
1 and
2 to be above lines L1 and L2,
respectively. This restriction can be expressed as

�ti + �1 � di; x � tk;

�ti + �2 � di; x > tk:

Among all the lines that satisfy this condition we would like to
choose the one that is closest to
1 and
2.

We next discuss the three different objective functions de-
scribed earlier for measuring the closeness of the skew line to
the set
.

(1) Minimize the sum of the vertical distances between the
points and the line.

obj1:=

NX

i=1

di �

NX

i=1

ti �� k�1 � (N � k)�2 (6)

(2) Minimize the area between the curve and the line.
Summing over the area between the line y = �x+ � and the

line segment between every two consecutive points in
 gives

obj2:=

k�1X

i=1

(di + di+1)(ti+1 � ti)

2
+

N�1X

i=k+1

(di + di+1)(ti+1 � ti)

2

�
t2N � t2k+1 + t2k � t21

2
�� (tk � t1)�1 � (tN � tk+1)�2: (7)

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

www.manaraa.com

IEEE INFOCOM 2002 5

Unlike the case with no clock resets, even when the measure-
ment points are equally spaced, i.e., ti+1 � ti = c, obj1 and
obj2 are no longer related by a linear equation. The optimal so-
lution for the two objective functions, therefore, are not always
the same.

(3) Maximize the number of points on the line.
Counting the number of points over the two sections, we have,

obj3 :=

kX

i=1

1fdi=�ti+�1g +

NX

i=k+1

1fdi=�ti+�2g: (8)

In spite of being nonlinear, the maximization problem for this
objective function can still be solved in time O(N).

We next develop linear time algorithms for these three objec-
tive functions by computing the convex hull of the two sections
of
.

For any fixed �, and given c1; c2; c3; c4, by first taking the
minimum over �1 and �2, we define

f(�) = min
�1;�2

c1 � c2�� c3�1 � c4�2

s.t. ti�+ �1 � di; i = 1; : : : ; k;

ti�+ �2 � di; i = k + 1; : : : ; N:

We can then take the minimum over � and obtain:
Proposition 5: The minimization over �; �1; �2 can be se-

quentialized, i.e.,

min
�

f(�) = min
�;�1;�2

c1 � c2�� c3�1 � c4�2

s.t. ti�+ �1 � di; i = 1; : : : ; k;

ti�+ �2 � di; i = k + 1; : : : ; N:
We assume c3; c4 > 0, which is satisfied by both obj1 and

obj2. By taking a closer look at the function f(�), we can prove
the following key structural property.

Theorem 6: f(�) is convex in �.
Proof: From the constraints, we have

�1 � di � ti�; i = 1; : : : ; k;

�2 � di � ti�; i = k + 1; : : : ; N:

Since c3; c4 > 0,

f(�) = c1 � c2�� c3 min
1�i�k

fdi � ti�g � c4 min
k<i�N

fdi � ti�g

= c1 � c2�+ c3 max
1�i�k

fti�� dig+ c4 max
k<i�N

fti�� dig (9)

The result follows because max is a convex function. 2

Following the same approach as in Section III-C.2, since f(�)
is convex, it suffices to find a local minimal solution. Suppose
for �1 < �2, the points where the optimal solutions for f(�1)
and f(�2) touch co (
), are the same extreme point. Assume
this extreme point is (ti1 ; di1) for i1 � k, and (ti2 ; di2) for i2 >
k. This means that the maxima over i in (9) are achieved at i1
and i2, respectively. Therefore,

f(�j) = c1�c2�j+c3(ti1�j�di1)+c4(ti2�j�di2); j = 1; 2:

Then, f(�1)� f(�2) = (c3ti1 + c4ti2 � c2)(�1��2): There-
fore,

f(�1) < f(�2) () c3ti1 + c4ti2 > c2: (10)

This shows that when c3ti1 + c4ti2 � c2, f(�) is decreasing.
Conversely, if c3ti1 + c4ti2 � c2, f(�) is increasing. Notice
that ti1 and ti2 are increasing functions of �. Hence the opti-
mal solution is achieved by the lower boundary of co (
) that
satisfies c3ti1 + c4ti2 = c2. For obj1, from (6), condition (10)
becomes kti1 + (N � k)ti2 =

X

i

ti: (11)

And for obj2, from (7), condition (10) becomes

(tk� t1)ti1 +(tN � tk+1)ti2 = (t2N � t2k+1+ t2k� t21)=2: (12)

Therefore, we have the following theorem:
Theorem 7: For the fixed clock reset at time tk+1, the opti-

mal solution for the distance objective, obj1 is the section of
the lower boundary of co (
) that satisfies condition (11). The
optimal solution for the area objective, obj2 is the section of the
lower boundary of co (
) that satisfies condition (12). The over-
all time for finding the optimal solutions for both obj1 and obj2
are of order O(N).

B. Multiple Clock Resets

The results in the previous section for the single clock
reset can be easily extended to the case with multi-
ple clock resets. Assume first that R clock reset times
f tk1+1; tk2+1; : : : ; tkR+1 g; (1 < k1 < k2 < � � � < kR <
N � 1) are given. These reset times divide all the points into
R+ 1 sections,

1 := fvi = (ti; di) : i = 1; : : : ; k1g;

... (13)

R+1 := fvi = (ti; di) : i = kR + 1; : : : ; Ng:

We would like to find the best skew lines in the R+1 segments
such that they have the same slope and are close to
j ; j =
1; : : : ; R+ 1:

We first obtain the convex hull of each section
j ; j =
1; : : : ; R + 1: The optimal skew line must touch at least one
point in each section. Assume ti1 ; : : : ; tiR+1 are the extreme
points that the optimal skew lines touch in each section.

For the distance objective obj1, condition (11) generalizes to

k1ti1 + (k2 � k1)ti2 + � � �+ (N � kR)tiR+1 =
X

i

ti: (14)

For the area objective obj2, condition (12) generalizes to

(tk1�t1)ti1+(tk2�tk1+1)ti2+� � �+(tN�tkR+1)tiR+1 = V=2;
(15)

where V = t2k1 � t21 + t2k2 � t2k1+1 + � � � + t2N � t2kR+1: Fur-
ther notice that the time of the touching vertices ti1 ; : : : ; tiR+1
increase as � increases. We therefore have the same result as
Theorem 7 with the generalized conditions (14) and (15) for the
given multiple clock resets.

Theorem 8: For the fixed clock resets at times f tk1+1; : : : ;
tkR+1 g; (1 < k1 < � � � < kR < N�1), the optimal solution for
the distance objective, obj1 is the section of the lower boundary
of co (
) that satisfies condition (14). The optimal solution for
the area objective, obj2 is the section of the lower boundary of
co (
) that satisfies condition (15). The overall time for finding
the optimal solutions for both obj1 and obj2 are of order O(N).

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

www.manaraa.com

IEEE INFOCOM 2002 6

Based on these results we provide the following algorithm
to identify the optimal clock skew slope � for a given set of
clock reset times, f tk1+1; tk2+1; : : : ; tkR+1 g. We set k0 =
0; kR+1 = N +1, to simplify the notation. We first apply Algo-
rithm Convex Hull L for each section
j ; j = 1; : : : ; R + 1,
to obtain the lower convex hulls. Let convexj = (kj +
1; : : : ; kj+1) be the indices of the vertices of the lower convex
hull of
j .

Algorithm Identify Best Alpha:

(1) Initialize:
index[i] = ki + 1; i = 0; : : : ; R;
slope[i] = slope(vindex[i]; vindex[i]+1); i = 0; : : : ; R;
Set LHS and RHS;

(2) While (LHS < RHS)
segment = argminfslope[0]; : : : ; slope[R]g;
index[segment] = next index in convexsegment ;
� = slope[segment];
Update slope[segment];
Update LHS;

(3) Output slope � and indices index[0]; : : : ; index[R];
End.

For objective functions obj1, or obj2, LHS and RHS denote
the left hand side and right hand side of equation (14), or of
equation (15), respectively.

With the assumption that there is at most one clock reset ev-
ery p units of time (p = N=(R + 1)), we can search through
every possible clock reset combination, and apply Algorithm
Identify Best Alpha for each of the combinations. The clock
skew slope is then the best solution among all the possible clock
reset combinations. The overall algorithm can be summarized
as follows:

Algorithm R-Resets:

(1) Loop through ki =
(i�1)N

p
+ 1; : : : ; iN

p
; i = 1; : : : ; R;

Define
1; : : : ;
R+1 according to (13);
Apply Algorithm Convex Hull L, obtain co (
i) ; i = 1 : : : ; R;
Apply Algorithm Identify Best Alpha,

obtain best � for given k1; : : : ; kR;
Record current best solution and minimum objective value;

End loop;
(2) Output best slope � and clock reset times;

End.

If there are R clock resets, then there are R loops each
with N=R possibilities. Algorithm Convex Hull L runs in
time O(N) and Algorithm Identify Best Alpha runs in time
O(NR). Therefore, the overall complexity of this algorithm
is O((N=R)RNR).

C. Identifying Number and Time Epochs of Clock Resets

The major component in the complexity of the general R-
Reset algorithm lies in the combinatorial search for all possible
clock reset points. To further reduce the complexity of the algo-
rithm, we study heuristic algorithms to identify the number of
clock resets and where they occur.

We use a divide-and-conquer approach to identify the occur-
rences of clock resets. First, the whole data set is divided into

intervals. These intervals should be wide enough so that the
structural property of the delay measurements can be observed
within each interval. In particular, one should observe a sup-
porting straight line underneath the delay points in each interval.
On the other hand, these intervals need to be narrow enough so
that there is at most one clock reset within any three consecutive
intervals. We then apply Algorithm Convex Hull L and Theo-
rem 3 to identify the best skew lines within each interval. We
compare the skew lines for two adjacent intervals by calculating
the maximum distance between the two skew lines inside the
two intervals. The two skew lines are considered to be the same
if the maximum distance is smaller than some given tolerance
level. For each interval, if the skew line is different from any
of its two neighboring intervals then this interval is marked with
the possibility of containing a clock reset. Because a clock re-
set can result in two consecutive marked intervals, we need to
merge the adjacent marked intervals so that we can infer there
is exactly one clock reset within each marked interval. We can
then apply the linear search algorithm for one clock reset, i.e.,
Theorem 7, to identify the clock reset within each marked inter-
val. We can also use the skew slopes in the (unmarked) intervals
without clock resets to identify the best clock reset within the
marked intervals. These two approaches have the same com-
plexity and provide the same results in practice. The collection
of all the resets within marked intervals are all the reset points.

Algorithm Divide And Conquer:

(1) Divide all the data into intervals of width w;
(2) For each interval, apply Algorithm Convex Hull L

and Theorem 3 to identify best skew lines;
(3) For each interval,

- compare its skew line with neighbor skew lines;
- set marks for possible clock resets;

(4) Merge marked intervals to form intervals with
exactly one clock reset;

(5) For each marked interval, identify the best clock reset by
- the linear search algorithm for one clock reset (Theorem 7);
- or linear search for one clock reset with slope given by

some average of the slopes in the unmarked intervals;
(6) Merge the clock resets in all the marked intervals.

This algorithm has the advantage that it identifies the number
of clock resets, instead of being supplied with the number of
clock resets ahead of time. It agrees with the intuition from
our visual observations for reset points. Furthermore, this al-
gorithm has complexity O(Nw), linear in N , which makes it
very efficient. This algorithm provides the correct answer under
the following assumptions. First, it assumes that clock resets
do not happen very often and that one can identify the minimal
distance between two clock resets. One also needs to specify
a tolerance level for the comparison of two skew lines. This
tolerance level can be interpreted as the accuracy of the clocks.
These assumptions are fairly minimal, and hold true for most
real system clocks, making the algorithm attractive.

Another approach to identify the clock resets is to consider
the two one-way-delay data between the two machines. The
supporting straight lines for the two one-way-delay points have
symmetric slopes. When there is a clock reset, the delay points
would shift up for one data direction and shift down of the other

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

www.manaraa.com

IEEE INFOCOM 2002 7

data direction. By considering this observation and applying Al-
gorithm Convex Hull L we can design a marching algorithm to
identify the clock resets which runs in time O(N). This algo-
rithm, as well as the divide-and-conquer algorithm can be ap-
plied to address the clock skew problem with NTP. We defer the
detailed description and discussion of this marching algorithm
until Section V.

After identifying all the clock resets, one can then apply Algo-
rithm Identify Best Alpha to find the global optimal solution for
the skew lines with the clock resets given by the above heuris-
tics.

Remark: We further observe that the above algorithms can
be applied for the counting objective, obj3, if we use a simple
counter to record the number of points on the skew line as its
slope increases. The complexity of the algorithm stays the same.

V. CLOCK SKEW CORRECTIONS WITH VELOCITY

ADJUSTMENTS

The Network Time Protocol (NTP) [3] is used to synchro-
nize the time of a computer to another server or reference time
source, such as a radio or satellite receiver. Each computer can
communicate with multiple peers and reference time sources. At
every synchronization point, NTP determines if the clock setting
needs to be adjusted, (possibly) adjusts the speed of the com-
puter clock, and computes the time for the next synchronization.
All the decisions and computations are with regard to previous
synchronization points. Except at the first clock synchronization
point, which is usually when the computer boots up, NTP only
changes the speed of the clock. It does not reset the clock. The
clock adjustment information is logged in a set of files stored on
the computer.

In general, NTP can provide sub-millisecond accuracy on
LANs, and low tens of millisecond accuracy on WANs [3]. The
delay measurements between two computers depends on the
clocks on both machines. These machines may be both run-
ning NTP. The status of the remote clock is usually unknown,
which results in inaccurate measurements. We can improve the
accuracy of such measurements in several ways. If the remote
machine is not running NTP, we can first adjust the measure-
ments according to clock corrections from the local NTP (or
cron) log files. We then apply the clock reset algorithms in
Sections III and IV to obtain the clock skew for the remote ma-
chine, and adjust the measurements. Since the local NTP (or
cron) log files are updated online, this whole approach can be
applied online as well.

In the event that the remote machine is running NTP, and the
log files are not readily available from either machine, we need
to estimate the combined effects of the velocity adjustments
from both machines. In the sequel of this section, we discuss
this situation.

A. Piecewise Linear Skew Lines

From the measurement data, one would observe a supporting
straight line underneath the delay points, and then at a certain
point the supporting line would change its slope. This is the
piecewise linear skew lines for measurements with NTP versus
the parallel linear skew lines in Section IV.

As before, we assume a finite collection of measurement
points,
 = fvi = (ti; di) : i = 1; : : : ; Ng. We further
assume that the R clock reset times f x1; x2; : : : ; xR g are
given. Assume tki�1 < xi � tki ; i = 1; : : : ; R, where
1 < k1 < k2 < � � � < kR < N � 1). These reset times divide
all the points into R+1 sections,
1; : : : ;
R+1. We would like
to find the best piecewise linear supporting lines in the R + 1
segments such that they change their slopes at the given reset
times and that they are close to
j ; j = 1; : : : ; R+ 1:

Similar to Section IV, this problem can be formulated as a lin-
ear program. Let f (t1; b0); (x1; b1); : : : ; (xR; bR); (tN ; bN) g
be the turning points for the piecewise linear supporting lines.
Here, b0; b1; : : : ; bR; bN ; are the variables we need to solve. For
convenience, let k0 = 1; kR+1 = N; x0 = t1; xR+1 = tN . We
require all the measurement points be above the line segments.
This leads to the following set of linear constraints:
For all i = kj ; : : : ; kj+1 � 1; j = 0; : : : ; R:

di � bj �
bj+1 � bj
xj+1 � xj

(ti � xj):

After rearranging the terms these constraints can be written in
the following form:

�c01b0 + �c02b1 � �d0
. . .

... (16)

�cR1bR + �cR2bR+1 � �dR

where �c and �d are easily obtained from the data in
. We can
use both the distance (obj1) and area (obj2) objective functions
defined in Sections III and IV to measure the closeness of the
measurement points and the skew lines. These two objective are
both linear functions of the variables b0; b1; : : : ; bR; bN . One
can then apply the linear programming algorithms to find the
optimal solution which minimizes obj1 and obj2 subject to the
constraints in (16). We further remark that the special staircase
constraints in (16) allow the decomposition techniques in linear
programming to be readily applied. The decomposition algo-
rithm, however, does not guarantee O(N) complexity.

For the special case that there is only one turning point, this
linear program can be solved in time O(N). In this case, we
would like to solve for b0; b1; bN . We can express both b0 and
bN in terms of b1 and prove that the linear objective functions
are convex in b1. We can then apply the same techniques in Sec-
tion IV to find a local minimum solution for b1, by finding the
convex hull for the points in each section and searching through
b1. This locally minimal solution must be globally minimal due
to the convex property of the objective functions.

When there are more turning points, however, this approach
does not always give the optimal solution. The key for this ap-
proach to work is that the optimal piecewise linear skew lines
touch at least one measurement point within each of the R + 1
sections. If this assumption holds, one can then apply the same
search algorithm on b0 to obtain a local optimum solution which
must be globally optimal due to the convex property.

B. Identifying Number and Time Epochs of Velocity Adjust-
ments

It remains to find the turning points in the piecewise linear
skew lines. Because the skew line would have a different slope

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

www.manaraa.com

IEEE INFOCOM 2002 8

when there is a turning point in the interval, Algorithm Di-
vide And Conquer can be used to identify the sub-intervals with
exactly one turning point. One can then apply the linear algo-
rithm for one turning point in the previous section to identify the
best turning point.

Another approach for identifying the turning points is to ex-
amine the two one-way delay data points. We can obtain the
measurements for the one-way delay from the source machine to
the destination machine and at the same time, the one-way delay
from the destination machine back to the source machine. When
there is a clock reset (turning point), one of the one-way delay
measurements would turn up and the other one-way delay mea-
surement would turn down. This is best illustrated in Figure 3
for cron and Figure 5 for NTP. This phenomenon would make
the skew line for the upturning plot unchanged and the skew line
for the down turning plot rotate down. The skew lines for these
two one-way measurements should have symmetric slopes, i.e.,
the sum of the slopes should be close to zero. This marching al-
gorithm would march over time and consider the measurement
points from the two one-way delay points, one point at a time.
It would update the convex hull and the best skew line for each
set of the one-way delay points. When the sum of the slopes is
small enough and incorporating the new point makes the sum
farther away from origin, one would consider this new point a
turning point.

Marching Algorithm:

(1) Initialization:
- Adjust the initial time offsets;
- take one point from each one-way delay measurements;

(2) March over time. Select the next point until the end;
- apply Algorithm Convex Hull L and Theorem 3

update best skew lines for each one-way delay;
(3) Check condition for turning points

- If the sum of the slopes is small enough and the
new point changes this sum away from origin, then
+ this new point is a turning point;
+ print out the previous section;
+ start a new section;

(4) Goto Step (2);

This algorithm identifies the number of clock resets, instead of
being supplied with the number of clock resets ahead of time.
The complexity of this algorithm is O(N), which is very ef-
ficient. The algorithm agrees with the intuition from our vi-
sual observations for turning points by comparing two one-way
delay measurements. Combining the two one-way delay mea-
surements takes into account more information, and hence has
potential to be more accurate. One also obtains the best skew
lines in each section from this algorithm. We can certainly build
features into this algorithm such as the minimal time between
reset points and tolerance levels for skew slopes. In order for
this algorithm to provide the correct answer, one needs to have
fairly stable measurement data. The most attractive feature of
this algorithm is that it is adaptive, and can be readily applied
online due to its nature of marching over time.

One drawback of this algorithm is that it is quite sensitive to
network congestion. It may produce false turning points. And
the error during each step of the algorithm can propagate in later

steps. One way to reduce the number of false turning points is by
weakening the conditions for detecting the turning points. This
approach, however, would lead to the late detection of the turn-
ing points, which causes larger errors to propagate into future
estimates. One can resolve this issue by keeping a short history
list of the last certain number of points. When the algorithm
detects a turning point, it would use the best candidate in the
history list as the true turning point to calculate the skew lines.
The algorithm then would march on from this true turning point.

VI. ONLINE ESTIMATION AND CORRECTION

Many real time applications require the skew of the delay
measurements to be corrected online. Being able to correct the
clock skews online provides better flexibility and adaptivity for
the applications. Correcting the clock skews online can also be
used as a means for active clock synchronization. It can be an
alternative to or be used in combination with other clock syn-
chronization algorithms such as NTP.

We now study the techniques from the online perspective. Al-
gorithm Convex Hull L scans through each measurement point
in increasing order and builds a stack to store the lower convex
hull of the previous points. It can obviously be applied online, as
measurement points accumulate. Therefore, for the case with no
clock resets, the algorithm can be applied in an online manner,
with the same complexity.

Consider the case with possible clock resets. We assume there
is at most one clock reset every p units of time, which is gen-
erally the case in real systems. We apply Algorithm R Resets
for an initial set of measurement data, up to time � . We then
fix the optimal clock reset times produced by the algorithm
prior to time � � p. We label the last fixed clock reset time
to be tlast fixed reset. As more measurement points become
available, until time tlast fixed reset + 2p, we perform the al-
gorithm allowing only one clock reset after tlast fixed reset.
At the first measurement point after time tlast fixed reset +
2p, we perform the algorithm allowing two clock resets after
tlast fixed reset. We then fix the first of the two clock resets and
update tlast fixed reset. This procedure is repeated until some
time in the future when part of the history data are discarded and
the variables are updated to make the results more representative
of the recent data.

For the case with NTP, as discussed in Section V, the march-
ing algorithm is already an online algorithm, which is its attrac-
tive feature.

An advantage of applying the algorithms online is that we
can have the current best clock skew estimate. Using the re-
mote clock as a reference source, we can adjust the local clock
according to the skew estimate at certain well defined synchro-
nization points. These synchronization points can be defined
according to the previous data, for example, when the skew cor-
rection reaches a certain threshold.

VII. EXPERIMENTS

In this section we present an experimental study of the algo-
rithms by applying them to real network delay measurements.
We collected packet delay traces over the Internet as well as
within the IBM firewall using the ping and tcpdump utility.

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

www.manaraa.com

IEEE INFOCOM 2002 9

We used ping program to send icmp packets between two ma-
chines every second. On both machines we used the tcpdump
tool to collect the icmp packet information, including the packet
id and timestamp. We then have available the following time
stamps for each round trip measurement by ping:

s1: time that sender sent out the icmp request packet,
according to sender’s clock;

s2: time that receiver received the icmp request packet,
according to receiver’s clock;

s3: time that receiver sent out the icmp reply packet,
according to receiver’s clock;

s4: time that sender received the icmp reply packet,
according to sender’s clock.

The differences of the time stamps s2�s1 and s4�s3 are the two
one-way delay measurements. We collected these data every
one to four seconds, over the duration of a couple of hours to
one day, between machines in New York and Nice, and between
New York and Beijing. We apply the algorithms in Sections IV
and V to obtain the clock skew lines.

-0.2

-0.1

0

0.1

13:00:00 14:00:00 15:00:00 16:00:00

De
lay

 (S
ec

on
d)

Measured One Way Delay Process: machine1(Hawthorne) > machine2(Yorktown)

measurements
clock resets

reset intervals
shifted skew lines

-0.1

0

0.1

0.2

13:00:00 14:00:00 15:00:00 16:00:00

De
lay

 (S
ec

on
d)

Measured One Way Delay Process: machine2(Yorktown) > machine1(Hawthorne)

measurements
clock resets

reset intervals
shifted skew lines

0
0.005

0.01
0.015

0.02
0.025

0.03

13:00:00 14:00:00 15:00:00 16:00:00

D
el

ay
 (S

ec
on

d)

Time

Measured Round Trip Delay: machine1(Hawthrne) > machine2(Yorktown) > machine1

round trip delay

Fig. 3. Measurements with clock resets over LAN

Figure 3 presents the measurements between two closely lo-
cated machines within 10 miles apart, connected by a corporate
network. The top two plots show the two one-way delay mea-
surements. The bottom plot shows the round trip delay between
the two machines. The horizontal axis of all the plots are the
time the packets were sent from the machines. One of the two
machines resets its clock regularly with a standard clock server
while the other machine does not have any time synchronization
scheme. As can be seem from the one-way delay plots there
are four clock resets all happening on the hour. At the time of
the clock resets, the first one-way delay plot shifts down while
the second one-way delay plot shifts up by an equal amount.
We applied Algorithm Divide and Conquer to divide the whole
time into 300 second sub-intervals and detected the intermediate
intervals with exactly one clock reset. The longest dividing lines
in the plot are the reset times that the algorithm detected, which
are exactly the time the machine resets its clock. The algorithm
was implemented in C, and finds the best skew lines within a
second on a 333MHz workstation.

Figure 4 presents the measurements between the same two
machines for the duration of 24 hours. Both of the machines
reset their own clocks regularly. The top 2 plots show the delay
data, intervals with resets and the clock reset times from the

-0.3

-0.2

-0.1

0

0.1

16:00:00 20:00:00 00:00:00 04:00:00 08:00:00 12:00:00

De
lay

 (S
ec

on
d)

Measured One Way Delay Process: machine1(Hawthorne) > machine2(Yorktown)

measurements
clock resets

shifted skew lines

-0.1

0

0.1

0.2

0.3

16:00:00 20:00:00 00:00:00 04:00:00 08:00:00 12:00:00

De
lay

 (S
ec

on
d)

Measured One Way Delay Process: machine2(Yorktown) > machine1(Hawthorne)

measurements
clock resets

shifted skew lines

-1.4e-06

-1.2e-06

-1.0e-06

-0.8e-06

-0.6e-06

0 20 40 60 80 100 120 140 160 180

Sk
ew

 S
lop

e

Estimated Skew Slope in Each Interval: machine1(Hawthorne) > machine2(Yorktown)

slope within interval
sample average
moving average
best skew slope

0.8e-06

1.0e-06

1.2e-06

1.4e-06

1.6e-06

0 20 40 60 80 100 120 140 160 180

Sk
ew

 S
lop

e

Interval Index

Estimated Skew Slope in Each Interval: machine2(Yorktown) > machine1(Hawthorne)

slope within interval
sample average
moving average
best skew slope

0.01
0.02
0.03
0.04

16:00:00 20:00:00 00:00:00 04:00:00 08:00:00 12:00:00

D
el

ay
 (S

ec
on

d)

Time

Measured Round Trip Delay: machine1(Hawthrne) > machine2(Yorktown) > machine1

round trip delay

-0.3

-0.2

-0.1

0

0.1

16:00:00 20:00:00 00:00:00 04:00:00 08:00:00 12:00:00

De
lay

 (S
ec

on
d)

Measured One Way Delay Process: machine1(Hawthorne) > machine2(Yorktown)

measurements
reset times

shifted skew lines

-0.1

0

0.1

0.2

0.3

16:00:00 20:00:00 00:00:00 04:00:00 08:00:00 12:00:00

De
lay

 (S
ec

on
d)

Measured One Way Delay Process: machine2(Yorktown) > machine1(Hawthorne)

measurements
reset times

shifted skew lines

Fig. 4. Measurements with clock resets over LAN

divide and conquer algorithm. The algorithm correctly detected
all the clock resets and found the best skew lines. The third
and fourth plots show the skew slopes for each interval with no
resets, their running averages, exponentially weighted moving
averages, and the global optimal skew slopes. Interestingly, we
observe that the skew slopes are more stable on the forward path,
with less than 10% deviations, while the deviation on reverse
path is around 30%. This difference is probably due to the fact
that the forward and reverse paths go through different links.
The absolute values of the slopes are on the order of 10�6, which
means the two clocks can be synchronized to millisecond level
accuracy if they adjust with respect to each other every hour.
To solve the global optimal skew slopes by taking into account
both one-way delay measurements such that the two skew slopes
are opposite to each other, we can put together the two one-way
delay data, one in the forward direction and one in the backward
direction. This changes the skew slope of the backward data
into opposite direction. We then apply the divide and conquer
algorithm to solve for the global optimal skew slope. The fifth
plot in Figure 4 shows the round trip delay data on the order
of sub-milliseconds. We also applied the marching algorithm to
this data set to find the reset points and the best skew slopes. The
running time for the marching algorithm is comparable to the

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

www.manaraa.com

IEEE INFOCOM 2002 10

divide and conquer algorithm. The bottom two plots in Figure 4
show the results. We notice that the marching algorithm detected
most of the clock resets except the two small clock resets at
time 16:00:00 and 18:30:00, while the divide and conquer
algorithm was able to detect them. In the case of clock resets,
we further point out that although the marching algorithm can be
applied adaptively and online, it does not give the global optimal
solutions, in contrast to the divide and conquer algorithm.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

02:00:00 04:00:00 06:00:00 08:00:00 10:00:00

De
lay

 (S
ec

on
d)

Measured One Way Delay Process: rafale(France) > bbucket(New York)

measurements
NTP adjustment

shifted skew lines

-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3

02:00:00 04:00:00 06:00:00 08:00:00 10:00:00

De
lay

 (S
ec

on
d)

Measured One Way Delay Process: bbucket(New York) > rafale(France)

measurements
NTP adjustment

shifted skew lines

0.11
0.13
0.15
0.17
0.19

02:00:00 04:00:00 06:00:00 08:00:00 10:00:00

D
el

ay
 (S

ec
on

d)

Time

Measured Round Trip Delay Process: rafale(France) > (bbucket) > rafale(France)

round trip delay

Fig. 5. Measurements with clock resets using ntpdate between New York
and Nice

We also performed an experiment between two machines in
New York and Nice. One machine uses ntpdate to adjusts
its clock regularly and the other does not adjust its clock. The
way this new version of ntpdate adjusts the computer clock
is by changing the speed of the clock for a duration of time and
then letting the clock run at its own speed. This is different from
rdate in the sense that rdate simply resets the clock to the
correct time and lets the clock run. The top two plots in Fig-
ure 5 show the two one-way delay measurements and the results
of applying the marching algorithm. The algorithms identified
all the true turning points and the correct skew lines, which was
validated against the NTP logs on the machine. We notice that
several false turning points were identified due to Internet con-
gestion and the relatively large delay jitter. The skew slopes
between these two machines are on the order of 10�4.

-163.5

-163.4

-163.3

-163.2

15:00:00 16:00:00 17:00:00 18:00:00

De
lay

 (S
ec

on
d)

Measured One Way Delay Process: machine1(New York) > machine3(China)

measurements
NTP adjustment

shifted skew lines

163.5

163.6

163.7

163.8

03:00:00 04:00:00 05:00:00 06:00:00

De
lay

 (S
ec

on
d)

Measured One Way Delay Process: machine3(China) > machine1(New York)

measurements
NTP adjustment

shifted skew lines

0.26
0.3

0.34
0.38
0.42
0.46

15:00:00 16:00:00 17:00:00 18:00:00

D
el

ay
 (S

ec
on

d)

Time

Measured Round Trip Delay: machine1(New York) > machine3(China) > machine1

round trip delay

Fig. 6. Measurements with NTP between New York and Beijing

We further performed an experiment between two machines
in New York and Beijing. One machine uses NTP to adjust its
clock and the other does not adjust its clock. As in the previous
example, Figure 6 shows the two one-way delay measurements
and the round trip delay. The marching algorithm worked well

and found the proper turning points and skew lines. The skew
slopes between these two machines are on the order of 10�5.

Remark: Although obj1 and obj2 are different technically,
they provided the same solutions in all our experiments. This is
because the data we collected are evenly distributed. obj3 also
provides the “correct” answer, together with some false answers.
This is because it is unlikely for many measurement points to be
on exactly the same line. obj1 and obj2 are therefore preferable
choices.

Compared with previous work, for the case with no clock re-
sets, our convex hull algorithm is essentially the same as the lin-
ear programming algorithm in [4]. The convex hull algorithm is
more visual and intuitive. The linear regression algorithm in [5]
is more sensitive to the network congestion as discussed in [4],
and also as observed by our experiments for the data in Figure 1.
For the case with clock resets and with velocity adjustments, the
algorithms in [4], [5] would provide the wrong answer because
they cannot account for the jumps and direction changes in the
delay measurements.

VIII. SUMMARY

To summarize, in this paper we studied algorithms for ad-
justing the delay measurements to obtain more accurate results.
These algorithms, based on a convex hull approach, are intuitive
and computationally efficient. Furthermore, these algorithms
can be applied online in an adaptive manner. The most signif-
icant contribution of this study is that it solved the problem for
the cases with clock resets and with velocity adjustments (such
as NTP).

These algorithms have a wide range of applications, from
computer systems to communication networks, from local area
network to the Internet domain, from traffic routing to applica-
tion tuning, from network management to QoS control. They
can be used not only to improve the Internet measurements, but
also to actively synchronize clocks.

Acknowledgments: The authors are grateful to Douglas
Freimuth, Yunhee Jang, Hong Li, Naceur Malouch, David Ol-
shefski, Jehan Sanmugaraja, and Kun Song, for their help in
setting up the experiments.

REFERENCES

[1] DYER, M.E., Linear Time Algorithms for Two- and Three-Variable Lin-

ear Programs. SIAM Journal on Computing, 13 (1983), 31-45.

[2] MEGIDDO, N., Linear-Time Algorithms for Linear Programs in R3 and

Related Problems. SIAM Journal on Computing, 12(4) (1983), 759-776.

[3] MILLS, D., Network Time Protocol (Version 3) - Specification, Imple-

mentation and Analysis, RFC 1305, University of Delaware, March 1992.

[4] MOON, S.B., SKELLY, P. AND TOWSLEY, D., Estimation and Removal

of Clock Skew from Network Delay Measurements. In Proceedings of the

IEEE INFOCOM Conference on Computer Communications, page 227-

234, March 1999.

[5] PAXSON, V., On Calibrating Measurements of Packet Transit Times. In

Proceedings of the ACM SIGMETRICS, Madison, Wisconsin, June 1998.

[6] ROCKAFELLAR, R.T., Convex Analysis. Princeton Univ. Press, 1970.

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

